http://blog.lenoxtools.com/industrial-metal-cutting/feed/

Tips for Improving Circular Saw Blade Life in Ball and Roller Bearing Production

May 30, 2016 / , , , , , , , , , ,


For any metal-cutting operation, bottlenecks are the enemy. Whether caused by machine error, tooling failure, user error, or some other maintenance issue, the end result is typically the same—increased downtime, rework, and scrap, all of which eat into the bottom line. And for a high-production operation like ball and roller bearing manufacturing, a hiccup in early sawing operations can quickly wreak havoc on the entire production process and schedule.

Although circular sawing may seem like a simple operation, there are number of variables that play a role in achieving consistent, quality cuts while also getting the most out of each saw blade. As an archived article from Fabricating & Metalworking explains, “Saws are very much like the people who use them: they don’t react well to heat, shock, abrasion, stress, and tension.” Far too often, managers and operators ignore these critical factors and, as a result, experience premature blade failure and end up going through far more blades than necessary.

Proper cutting speeds, feed rates, blade tension, and lubrication all tie into blade life—a factor any blade buyer knows is critical when it comes to cost.

“Precision circular saw blades can be upwards of  $200 a piece, so you don’t want to just go through those,” Mike Baron, vice president of Jett Cutting, says in a case study published by the LENOX Institute of Technology (LIT). “If I am getting 100 pieces an hour at this setting, but push it up to get 150, I may be going through twice as many blades. It just isn’t cost effective.”

Glen Sliwa, maintenance manager at metal service center A.M. Castle & Co, also focuses on blade life to better manage costs. In addition to following a strict preventative maintenance program to save on tooling and equipment costs, Sliwa says it is just as critical to ensure operators know how to optimize blade life. This includes training operators to follow manufacturer suggested cutting parameters, as well as closely tracking tolerance requirements so blades can be reused whenever possible.

“We’re looking at how many pieces that we can get off that blade and then stand perpendicular to the part,” Sliwa explains. “If you have to stay within ten-thousandths or five-thousandths on the cut, and that blade is no good, I can take it off that machine and put it on another one and I can cut an eighth of an inch, 125 thousandths. So I’m still getting more blade life out of it, but it’s not interfering with that customer’s specifications.”

To help ball and roller bearing manufacturers extend the life of their circular saw blades, the below chart offers a few troubleshooting tips from LIT’s reference guide, “Tips and Tricks to Optimize Your Precision Circular Sawing Operation.” By understanding some common blade issues and their root causes, operators can reduce premature blade failure and, in turn, improve your  operation’s overall productivity and save on tooling costs.
chart 3

For more downloadable information on optimizing your company’s precision circular sawing operation, you can visit LIT’s resource page here.